Kea DHCP

Kea lease allocation, client classification and option assignment

Carsten Strotmann and the ISC Kea Team

CREATED: 2025-11-11 TUE 10:28

In this Chapter

« Lease allocation

« Client classification

« DHCP options

« DHCP reservations

« Shared subnets

o Questions & Answers

DHCP options

DHCP options

« DHCP options can be configured in different scopes in the Kea
configuration
= Global
= Class
= Subnet
= Pools
= Reservations

Global DHCP options (1/2)

"Dhcp4": {
"option-data": [{
"name": "domain-name-servers",
"code": 6,
"space": "dhcp4",
"csv-format": true,
"data": "192.0.2.1, 192.0.2.2"

3

Global DHCP options (2/2)

o If the default values are used, the fields code, space and csv—
format can be omitted

"Dhcp4d": {
"option-data": [{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2"
s

I -

Subnet specific DHCP option

[...]
"subnet4": [{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.100 - 192.0.2.200" }],
"option-data": [{
"name": "routers",
"data": "192.0.2.1" },
{
"name": "domain-name",
"data": "a.example.com" }

1},

Client class options

"client-classes": [{

"name": "Zimbutsio-Server",
"test": "option[vendor-class-identifier].text == 'Zimbutsio'",
"option-data": [{

"name": "log-servers",

"data": "192.0.2.42"
}

Defining custom DHCPV4 options (1/2)

o Sometimes it is required to define custom DHCP options that are
not part of the DHCP standards.
= [hese can be vendor specific options, or new DHCP options
that are not yet implemented in Kea DHCP

Defining custom DHCPV4 options (2/2)

{
"Dhcp4": {

"option-def": [{
"name": "my-message",
"code": 234,
"type" : "StI‘ing",
"array": false,
"record-types": "",
"space": "dhcp4",
"encapsulate": "" }],

"option-data": [{
"name": "my-message",

"space": "dhcp4",
"csv-format": true,
"data": "Hello World" }],

Option assignment order

DHCP Option Global Class-1 Class-N Network Subnet Pool Host DHCP Response

Domain Server . . # > l
Hostname . D | % -

Static Route

NBT NameSrv .
e b L O ‘
Captive Portal -

(Client-class options are assigned in the order in which the client classes are evaluated (specified in the configuration))

DHCP reservations

Why DHCP reservations

« Security policies

. Stable addressing (server)

 |P bound licenses

. Captive portal (KNOWN vs. UNKNOWN clients)

DHCP reservations

« Kea DHCP supports reservations of client leases based on
= Hardware interface address (MAC-Address)

DHCP Unique ID (DUID)

Relay-Circut-ID (DHCPv4)

Client-ID / Hostname (DHCPv4)

flex.id

DHCP reservation parameter

« Alongside IP-Address leases, reservations can also reserve a
number of DHCP parameters for a client
= Hostname
DHCP options
Reservation-client-classes
Boot-file-name (BOOTP/DHCPv4)
Next-server (BOOTP/DHCPv4)
Server-hostname (BOOTP/DHCPv4)

Global vs. Subnet reservations

« DHCP reservations can optionally be defined on a global scope
= Global reservations can be used to assign a fixed hostname
or other options to a client
= Kea does not prevent the definition of DHCP parameters on
the global level that are only useful in an subnet scope (like
|P address or IPv4 default route). Be careful!

« [The common case Is to have reservations in the subnet or shared-
subnet scope
» Kea 1.9+ does allow for reservations to be defined on a
global and subnet level (at the same time)

Example of global reservation

"Dhcp4:" {
This specifies global reservations. They will apply to all subnets that
have global reservations enabled.

"reservations": [

{ "hw-address'": "aa:bb:cc:dd:ee:ff", "hostname": "hw-host-dynamic" },

{ '"hw-address": "01:02:03:04:05:06", "hostname": "hw-host-fixed", '"ip-address": "192.¢
{ "circuit-id": "'office042'", "hostname": "circuit-id-host" },

[...]

In-pool vs out-of-pool reservations

« Host reservations can be inside a dynamic DHCP pool or outside a
dynamic DHCP pool
« Reservations that are inside a pool can lead to DHCP conflicts

(https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.ntml#conflicts-in-dhcpv4-reservations)

and also might result in a performance loss (see DHCP tuning)

https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#conflicts-in-dhcpv4-reservations
https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#conflicts-in-dhcpv4-reservations

Dynamically manage DHCP reservations

« Small Kea deployments (small = a few hundred client machines)
can have the DHCP reservations inside the Kea configuration file
 Larger deployments might want to change the DHCP reservations

dynamically and programatically via the API
= The Host Commands hook adds a number of new commands
to Kea used to query and manipulate host reservations

Dynamically manage DHCP reservations

« The Host Commands hook requires a database for storing the host
reservations

o |f reservations are specified in both file and database, file
reservations take precedence over the ones in the database.

Host Commands

COMMAND DESCRIPTION

reservation-add add a new reservation to the Kea DB

reservation-get-all get all reservation information (can be huge)

reservation-get get information on a single reservation (by address or identifier)
reservation-get-page get all reservation information from a subnet by pages (used for GUI display)

reservation-get-by-hostname get the reservation information for one host by its hostname
reservation-get-by-id get the reservation information for one host by its identifier (global, since 1.9.0)

reservation-del delete a reservation from the database

Example command file to add a
reservation (1/2)

o This command snippet can be used to create a new reservation
Inside the Kea Host database

$ cat reservation-add.json
{
"command": "reservation-add",
"service": ["dhcp6"],
"arguments': {
"reservation': {
"duid": "01:02:03:04:05:06:07:08:09:0A",
"hostname": "foo.example.com",
"ip-addresses": ["2001:db8:1::1"],
"option-data": [{

"data": "4491",

"name": "vendor-opts"
ol

"data": "3000:1::234",

"name": "tftp-servers",

"space": "vendor-4491"

H,
"subnet-id": 1

-xample command file to add 3
reservation (2/2)

« The cur Ll command can be used to send the request towards the
Kea API

$ curl -s -X POST -H "Content-Type: application/json" \
—d @reservation-add.json http://127.0.0.1:8000/ | jq
[
{
"result": 0,
"text": "Host added."
¥
]

-xample command file retrieving all
reservations

« [his command snippet can be used to retrieve all reservations
from the Kea Host database

$ cat reservation-get-all.json
{
"service": [
"dhcpﬁ"
]

J
"command": "reservation-get-all",
"arguments': {
"subnet-id": 1
}
¥
$ curl -s -X POST -H "Content-Type: application/json" \
-d @reservation-get-all.json http://127.0.0.1:8000/ | jq

Client classing In reservations

« Clients can be associated to a client-class using a reservation
(using the Hardware-Address, DUID, Client-ID, Relay-ID)

[...]
"subnet4": [
{
"subnet": "10.0.0.0/24",
"pools": [{ "pool": "10.0.0.10-10.0.0.200" }],
"reservations": [{
"hw-address": "01:02:03:04:05:06",
"client-classes": ["windows", "staff"]
]
),
[...]

Performance tuning DHCP reservations

(1/4)

« Kea DHCP must check for every lease request for conflicts with
reservations. This can slow down the DHCP lease assignment

pProcess
= |Nn some cases, where reservations are not in use or used

only In certain scopes, some of these checks can be disabled
with the reservation—-mode configuration parameter
= [he parameter can be specified at global, subnet, ana

shared-network levels.

"Dhcp4": {
"subnet4": [{
"subnet": "192.0.2.0/24",
"reservation-mode": "disabled",

“erformance tuning DHCP reservations
2/4)

RESERVATION- DESCRIPTION

MODE

Reservations can be on global, subnet or inside pool

il

° scope, all checks enabled (default)

out-of-pool Reservations in subnets are always outside the pool
obal Only global reservations allowed, not subnet/pool

J reservations

disabled(*) Host reservation support is disabled, no checks for

collisions

(*) the best performance is achieved when host reservations are disabled (if no reservations are used). In that case Kea can skip all the checks
and lookups.

“erformance tuning DHCP reservations
3/4)

« Kea currently supports four types of identifiers:
= hw—address
= duid
= client-1d
= clrcult-1id
« flex-1d

« For each incoming packet, Kea has to extract each identifier type
and then query the database to see if there is a reservation by this
particular identifier.

“erformance tuning DHCP reservations
4/4)

A parameter called host-reservation-identifiers takes
a list of identifier types that Kea will check
= For best performance the number of identifier types should
be kept to a minimum, ideally one.

"host-reservation-identifiers": ["circuit-id", "hw-address" 1],
"subnet4": [{
"subnet": "192.0.2.0/24",

. s

Shared networks

Shared networks

« A shared subnet is a physical subnet with multiple IP networks
= One shared subnet definition can contain two or more subnet
definitions
= Options can be defined on the shared-network, subnet and
pool level
= Without client classification, Kea might choose an |P address
from any pool of all subnets inside the shared network

When to use shared networks

« Shared Subnets are adding complexity to a DHCP server
configuration and should only be used if there is a good use case

= Shared subnet are sometimes created if a larger number of
|IP addresses are needed in a network, but because of |[Pv4
address shortage no continuous range of |IPv4 addresses are
available

= Another use case of shared subnets is a network where
addresses from different IPv4 subnets (and possibly different
network configuration) should be given to different network
devices

Kea configuration shared network

example

[...]

"'shared-networks'

{

llnamell : 1

"relay":

"'subnet4'

3]
1,

1 : [
'kea-1ab01",

{ "ip-address": "192.0.2.1" },

[
'subnet": "192.0.2.0/24",
"option-data": [

{ "name": "routers'", '"data": "192.0.2.1" }],

"pools": [{ "pool": "192.0.2.20 - 192.0.2.190" }]

"subnet": "10.0.0.0/24",
"option-data': [

{ "name": "routers'", '"data": "10.0.0.1" }],

"pools": [{ "pool": "10.0.0.10 - 10.0.0.200" }]

Client classification

DHCP client classes

« Kea DHCP can assign one or more client classes to client requests
« Depending on the client classes, different DHCP information can be
send to the client:
= DHCP-Options
» |P-Addresses
« BOOTP-Parameter inside DHCP responses

. Kea can select from multiple subnets / pools with the help of client
classes

DHCP client classes

o Client classes can be built from various DHCP identifiers
= |[nformation from the client host
= I[nformation from the DHCP relay
= [nformation from the DHCP packet path towards the DHCP
server

o Client classification examines the incoming DHCP packet's contents
and selects one or more class(es) based on configuration criteria

re do DHCP 1dentifiers come from

Where do DHCP identifiers come from

(2/4)

DHCP client

Where do DHCP identifiers come from

(3/4)

DHCP client

Where do DHCP identifiers come from

(4/4)

DHCP client

Automatic vendor classing

« Kea DHCP automatically assigns a vendor client class if a vendor
option (DHCPv4 option 60 or DHCPv6 option 16) is set in the DHCP
request

« The content of that option is prepended with VENDOR_CLASS_
and the result is interpreted as a class

= For example, modern cable modems send this option with
value docs1s3.0, so the packet belongs to class

VENDOR_CLASS_docsis3.0

Automatic vendor classing example

« Example subnet selection based on the vendor option

= A client must be in any of the client classes listed to get a
lease from this subnet

= [he vendor options used in this exercise are examples and
not the real-world vendor option values:

"shared-networks": [

{
"name": "kea-net0l",
"relay": { "ip-address'": "192.0.2.1" },
"subnet4": [
{

"subnet": "192.0.2.0/24",
"client-class": "VENDOR_CLASS_windowsCE", # <—— Windows CE Clients wi
an IP from this subnet
"option-data': [{
"name": "routers", '"data": "192.0.2.1" }],
"pools": [{
"pool": "192.0.2.60 - 192.0.2.220" }]

The KNOWN and UNKNOWN classes

Kea automatically assigns classes based on host reservations
= All clients with a host reservation will be in the KNOWN class
= All client without reservation will be in the UNKNOWN class

For example, these classes can be used to separate guests from
staff clients

"client-classes": [{
"name": "dependent-class",
"test": "member('KNOWN')",
"only-if-required": true

}]

Dynamic client classing based on
expressions

« DHCP requests can be assigned one or more client classes
= EXpressions can be used to extract information from the
DHCP request message
= Logical and conditional expressions can be used to assign
classes to the DHCP request

o List of available expressions

https://kea.readthedocs.io/en/latest/arm/classify.ntml#using-expressions-in-classification@@htm(:%3C/div%3E@@

https://kea.readthedocs.io/en/kea-1.8.0/arm/classify.html#using-expressions-in-classification
https://kea.readthedocs.io/en/latest/arm/classify.html#using-expressions-in-classification@@html:%3C/div%3E

Dynamic client classing based on
expressions

Name

String literal

Hexadecimal string literal

IP address literal

Integer literal

Binary content of the option
Option existence

Binary content of the sub-option
Sub-Option existence

Client class membership

Known client

Unknown client

DHCPv4 relay agent sub-option
DHCPvé Relay Options
DHCPv6 Relay Peer Address
DHCPvé6 Relay Link Address
Interface name of packet
Source address of packet
Destination address of packet
Length of packet

Hardware address in DHCPv4 packet

[PR N PR S S o Y BN ool o VN SRR P

List of Classification Values

Example expression
‘example’

Ox5a7d

10.0.0.1

123

option[123].hex
option[123].exists
option[12].option[34].hex
option[12].option[34].exists
member(‘foobar’)

known

unknown

relay4[123].hex
relayé[nest].option[code].hex
relayé[nest].peeraddr
relayé[nest].linkaddr
pkt.iface

pkt.src

pkt.dst

pkt.len

pkt4.mac

=l A Lo o

Example value

‘example’

7y

0x0a000001

123

‘(content of the option)’
‘true’

‘(content of the sub-option)’
‘true’

‘true’

member('KNOWN’)

not member(' KNOWN’)
‘(content of the RAI sub-option)’
(value of the option)
2001:DB8::1

2001:DB8::1

eth0

10.1.2.3

10.1.2.3

513

0x010203040506

s

Client classification example (1/2)

« Configuration for dynamic client classing based on the vendor
option (Option 60) content

"Dhcp4d": {
"client-classes": [
{ "name": "windows",
"test": "substring(option[60].hex,0,3) == 'win'",
"option-data": [{
"name": "domain-name", '"data": "win.example.com" }]
-
{ "name": "other",
"test": "not(substring(option[60].hex,0,3) == 'win')",
"option-data": [{
"name": "domain-name", "data": "other.example.com" }]

Client classification example (2/2)

« The client class Is used to select a subnet inside a shared network
= Windows clients get |IP addresses from the 1st subnet
= Client with other operating systems get |P addresses from
the 2nd subnet

"'shared-networks": [

{
"name": "kea-labol",
"relay": { "ip-address": "192.0.2.1" },
"subnet4": [
{

"subnet'": "192.0.2.0/24",
"client-class": "windows", # <—- all Windows Clients will
get IP addresses from this subnet
"option-data": [{
"name": "routers", '"data": "192.0.2.1" }],
"pools": [{
"pool": "192.0.2.60 - 192.0.2.250" }]

"subnet": "10.0.0.0/24",
"client-class": "other", # <—— non Windows Clients will

Client Classes with regular expressions

« Since Kea-DHCP Version 3.0 client classes can be selected based
on regular expressions

 The following client class looks into the OUl-part of the hardware
address and tests if they are from Apple Computers range of OUI-
Adresses:

"client-classes": [
{
"name": "Apple-Computer",
"test": "match('5c-1b-f4|a8-5b-b7|58-55-95|00-19-b8' ,hexstring(substring(pkt4.mac, 0,
s
[...]

o Client-Classing tests run for each incoming DHCP request
= Complex regular expressions can be CPU intensive and can
slow down the DHCP server

Classification via hooks

o Client classification via complex expressions can hurt the DHCP
server performance
 Alternative: writing a custom hook for client classification

Debugging client classing (1/3)

« To debug client classing based on expressions, enable debug
logging inside the Kea DHCP server
« Quick option: start Kea DHCP4 in debug mode from the command
line. This will automatically enable the highest debugging level
= 0N a busy server, this will create too much debug
information (see next slide for an alternative)

[kea-server]# systemctl stop kea-dhcp4
[kea-server]# kea-dhcp4 -d -c /etc/kea/kea-dhcp4.conf

Debugging client classing (2/3)

« Alternative: enable the special kea-dhcp4.eval or kea-
dhcp6.eval debug logger in the Kea configuration file

"Logging": {
"loggers": [{
"name": "kea-dhcp4.eval',

"output_options": [{
"output": "/var/log/kea-dhcp4-eval.log"
} 1,
"severity": "DEBUG",
"debuglevel": 55

}l
}

Debugging client classing (3/3)

« Watch for the test evaluation results in the Kea Eval DHCP4 log file

[kea-server]# tail -f /var/log/kea-dhcp4-eval.log

Resources

Understanding Client Classification

Do | need to use shared-networks or not with Kea DHCP?
Host Reservation in DHCPv4

Standard DHCP Options Defined in ISC DHCP and Kea

https://kb.isc.org/docs/en/understanding-client-classification
https://kb.isc.org/docs/en/do-i-need-to-use-shared-networks-or-not-with-kea-dhcp
https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#host-reservation-in-dhcpv4
https://kb.isc.org/docs/en/aa-01323

