
Kea DHCP
High-Availability options

Carsten Strotmann and the ISC Kea Team

CREATED: 2025-11-12 WED 08:12

1

In this Chapter
High-Availability Options

Split/Shared Pool
Pure static DHCP
Shared Database
Kea High-Availability Cluster

2 . 1

High Availability

3 . 1

DHCP High-Availability

DHCP is a critical resource in most networks
If the DHCP service is down, machines and computers
cannot join the network

DHCP administrators like to make the DHCP service redundant and
high-available

3 . 2

Kea High-Availability options

Kea DHCP supports different high availability (HA) options
Some require only configuration changes
Other require the (free) HA hook

Kea does not support the standardized DHCPv6 fail-over protocol
()

@@
It supports a HA implementation that aligns with the Kea software design and covers most use-cases

RFC 8156 "DHCPv6 Failover Protocol"
https://tools.ietf.org/html/rfc8156@@html:%3C/div%3E

3 . 3

https://tools.ietf.org/html/rfc8156
https://tools.ietf.org/html/rfc8156@@html:%3C/div%3E

DHCPv6 Split Pool / Shared Pool

The DHCPv6 split pool or shared pool HA solution are independent
from the DHCPv6 server implementation
These HA solutions do not require any synchronization between
the DHCP server
These solutions make use of the vast address space available in
one IPv6 /64 subnet
These solutions are not good solutions for DHCPv4, because the
address space in IPv4 is too small

3 . 4

DHCPv6 Split Pool

Split-Pool: because one IPv6 /64 is so large, it usually can be split
in two parts that are served by two independent DHCPv6 servers

The pools are not overlapping, it is impossible that the two
DHCPv6 servers will return the same lease address to
different clients
If one DHCPv6 server stops responding, the clients will
receive a new lease from the remaining DHCPv6 server
(after lease expiry)

3 . 5

DHCPv6 Split Pool

3 . 6

DHCPv6 Shared Pool

Shared-Pool: two DHCPv6 server are authoritative for the same
addresses from a pool

Because of the size of one IPv6 /64 subnet, the chance that
both servers give out the same address to different clients is
statistically very low

And if they did, IPv6 duplicate address detection (DAD)
will cover this rare edge case

If one DHCPv6 server stops responding, the clients will
receive a new lease from the remaining DHCPv6 server
(after lease expiry)

3 . 7

DHCPv6 Shared Pool

3 . 8

IPv4/IPv6 pure static DHCP

The pure static solution also works with any DHCP server, in IPv4
and IPv6 networks

The idea is to not use dynamic allocation of addresses, but
only static reservations
Two or more DHCP server are equipped with the same
reserveration configuration
Each server will always return the same IP address lease to
the same client

This solution requires an out-of-band synchronization of the
reservation

This could be done on the database level with a shared host
reservation database

3 . 9

IPv4/IPv6 pure static DHCP

3 . 10

IPv4/IPv6 shared database

The shared database solution moves the redundancy to the
database level

This solutions allows high availability with more than two
DHCP server nodes
Two or more DHCP server are connected to the same
(logical) database containing the lease information
The database itself should be made high available
All DHCP servers read and write lease information from/to
the same database

Database locking can lead to performance degradation(!) on high
rate of leases/renewals

3 . 11

IPv4/IPv6 shared database

3 . 12

High Availability Hook

Using the Kea DHCP High-Availability extension (HA hook) is the
most feature rich high availability solution
The HA hook offers different operation modes

Load-balancing: all DHCP server are active and return leases
Hot-standby: all DHCP server are in sync but only one is
active and returns leases
Passive-backup: one DHCP server is active and send lease
database updates to a number of backup servers.

3 . 13

Kea HA Mode: load-balancing

When operating in load-balancing mode, two Kea DHCP server are
active and respond to lease requests

The lease information is synced between the Kea DHCP HA
servers
The pools are split 50/50 between the two DHCP servers
Every DHCP server can take over the full service if needed
Via the HA protocol a DHCP HA node will detect if one
partner node is down and takes over the service

Once the partner is online again, the lease database is
synced

3 . 14

Kea HA Mode: load-balancing

3 . 15

Kea HA Mode: hot-standby

A Kea DHCP cluster configured for the hot-standby mode will have
the primary node serving DHCP clients and another node
(secondary) only receiving the lease-database updates, but not
serving clients

If the secondary server detects the failure of the primary, it
starts responding to all DHCP queries

3 . 16

Kea HA Mode: hot-standby

3 . 17

Kea HA Mode: hub-and-spoke

In an hub-and-spoke configuration one (central) Kea-DHCP server
provides backup for a number of active (satellite) Kea-DHCP server
The satellite Kea-DHCP server are often located in branch-offices
The backup central Kea-DHCP is often located at the organizations
head-quarter (HQ)
Hub-and-spoke mode is available since Kea-DHCP 3.0

3 . 18

Kea HA Mode: Backup Servers

Kea DHCP supports any number of backup servers
Backup server receive lease database updates but are not an
active part of an HA setup
Backup server can be deployed in addition to the other Kea
HA modes

3 . 19

Kea HA Mode: Backup Server

3 . 20

Kea HA Mode: passive-backup

In the passive-backup configuration, only one Kea server is active
and is serving leases to the clients

Any number of passive (not answering to clients) backup
servers receive lease database backups
Since Kea 1.7.8, the active server does not need to wait for a
lease update confirmation from the backup servers before
giving the lease to a client

This reduces the latency compared to the other HA
modes

In case of an failure of the active server, a backup server needs to
be manually promoted to be active

This could be automated outside of Kea with API calls from a
monitoring system

3 . 21

Kea HA Mode: passive-backup

3 . 22

Example Configuration: Kea
DHCP Failover Cluster

4 . 1

Kea HA Configurations

The Kea HA configuration parts are symmetric, all HA peers can
share an almost identical configuration file

The only difference in the HA configuration is the this-
server-name parameter

The HA mode is selected with the mode parameter

4 . 2

Example Load-Balancing Configuration

"Dhcp4": {
 "hooks-libraries": [{
 "library": "/usr/lib/kea/hooks/libdhcp_lease_cmds.so", "parameters": { }
 }, {
 "library": "/usr/lib/kea/hooks/libdhcp_ha.so", "parameters": {
 "high-availability": [{
 "this-server-name": "server1",
 "mode": "load-balancing",
 "heartbeat-delay": 10000, "max-response-delay": 40000, "max-ack-delay": 5000,
 "max-unacked-clients": 5,
 "peers": [{
 "name": "server1",
 "url": "http://192.0.2.33:8000/",
 "role": "primary", "auto-failover": true
 }, {
 "name": "server2",
 "url": "http://192.0.2.66:8000/",
 "role": "secondary", "auto-failover": true
 }, {
 "name": "server3",
 "url": "http://192.0.2.99:8000/",
 "role": "backup",
 "basic-auth-user": "foo", "basic-auth-password": "bar",
 "auto-failover": false
 }]
 }]
 }

 }],
[...]

4 . 3

Example Hot-Standby Configuration

"Dhcp4": {
 "hooks-libraries": [{
 "library": "/usr/lib/kea/hooks/libdhcp_lease_cmds.so", "parameters": { }
 }, {
 "library": "/usr/lib/kea/hooks/libdhcp_ha.so", "parameters": {
 "high-availability": [{
 "this-server-name": "server1",
 "mode": "hot-standby",
 "heartbeat-delay": 10000, "max-response-delay": 40000,
 "max-ack-delay": 5000, "max-unacked-clients": 5,
 "peers": [{
 "name": "server1",
 "url": "http://192.0.2.33:8000/",
 "role": "primary", "auto-failover": true
 }, {
 "name": "server2",
 "url": "http://192.0.2.66:8000/",
 "role": "standby", "auto-failover": true
 }, {
 "name": "server3",
 "url": "http://192.0.2.99:8000/",
 "basic-auth-user": "foo", "basic-auth-password": "bar",
 "role": "backup", "auto-failover": false
 }]
 }]
 }
 }],
 [...]

4 . 4

Kea HA Maintenance

5 . 1

Sending control commands to the Kea
HA Module

As many other parts of the Kea system, the HA module can be
controlled over the network with the REST-API

It receives commands in JSON format via the Kea Control
Agent (CA)
The following slides give examples of useful API commands
More commands and details can be found in the Kea
Reference Manual

@@https://kea.readthedocs.io/en/latest/arm/hooks.html#control-commands-for-high-availability@@html:%3C/div%3E

5 . 2

https://kea.readthedocs.io/en/latest/arm/hooks.html#control-commands-for-high-availability@@html:%3C/div%3E

Database synchronization

The ha-sync command triggers the server to sync the lease
database with the selected peer

{ "command": "ha-sync",
 "service": ["dhcp4 "],
 "arguments": {
 "server-name": "server2",
 "max-period": 60
 }
}

5 . 3

Retrieving the HA status

The command ha-heartbeat can be used to check the current
state of a Kea DHCP server HA node

The returned JSON structure describes the current DHCP server
state

{ "service": ["dhcp4"], "command": "ha-heartbeat" }

{
 "result": 0,
 "text": "HA peer status returned.",
 "arguments":
 {
 "state": "partner-down",
 "date-time": "Thu, 07 Nov 2019 08:49:37 GMT"
 }
}

5 . 4

Fetching the HA configuration

With the status-get command, the administrator can request
the current HA configuration from a Kea DHCP server node

{
 "result": 0,
 "text": "",
 "arguments": { "pid": 1234,
 "uptime": 3024,
 "reload": 1111,
 "high-availability": [{
 "ha-mode": "load-balancing",
 "ha-servers": {
 "local": {
 "role": "primary",
 "scopes": ["server1"],
 "state": "load-balancing" },
 "remote": {
 "age": 10,
 "in-touch": true,
 "role": "secondary",
 "last-scopes": ["server2"],
 [...]
 "analyzed-packets": 8 }
 }}],
 "multi-threading-enabled": true,
 "thread-pool-size": 4,

 "packet-queue-size": 64
 }
}

5 . 5

Controlling Maintenance Mode

Before removing a Kea DHCP server from a HA setup, the server
should be set into maintenance mode

The commands ha-maintenance-start and ha-
maintenance-cancel commands can be use to bring a
server in or out of maintenance mode

5 . 6

Decision tree for production
systems

6 . 1

"so many options, which should I
implement?"

Kea offers many different high-availability options
For an user new to Kea or DHCP administration, this can be a
hard choice

The next slides give some general recommendations and guidance
on how to select an high-availability option for a Kea deployment

6 . 2

Load-balancing vs. hot-standby

As the name implies, in the load-balancing mode the load is
distributed across both active DHCP servers

With complex client classing rules, this can be faster than a
single active server
The load-balancing mode requires a 50/50 split of the pools
across both HA server nodes

The hot-standby mode is simpler
Only one active server, one active log file for trouble
shooting
No split pools required

6 . 3

HA Module vs. shared database

A shared database setup offers redundancy for more than two
active DHCP servers
In a shared database setup, two clients might be offered the same
IP address

One will succeed, the other will get a DHCPNAK from the
server and has to start the DHCP process again.

The HA module works with the memfile lease database, which
offers better performance most of the time compared to an SQL
database

6 . 4

HA Module vs. split/shared Pool

Split- or shared pools only work well with DHCPv6
These are good options for IPv6-only networks
Split- or shared pools are simple and easy to maintain

The HA module is more universal
It works for DHCPv4 and DHCPv6 and across all supported
lease file storage back ends (memfile and SQL-Database)

6 . 5

